Medycyna Wet. 66 (12), 833-838, 2010
Małaczewska J.
Cytotoxicity of silver nanoparticles
Nanotechnology concerns the study, creation and manipulation of structures, devices, and systems at a nanoscale level. Such materials exhibit unique biological, physical and chemical properties compared to bulk materials, and are readily utilized in modern medicine and industry. Currently silver nanoparticles (SNP) are among the most commonly used nanomaterials due to their antimicrobial properties. Nanosilver can be found in medical devices, filters for water purification and in many consumer products as well. However, some recent studies indicate that nanosilver formulations may be cytotoxic to various types of both animal and human cells. Because their size is similar to cellular components they are able to bypass cell membranes, which results in cytotoxicity, although the exact mechanism of such an interaction is yet to be established. Several studies have reported the accumulation of SNP inside cells and their impact on cell morphology, while many of them claim that nanosilver induces cell necrosis or apoptosis due to decreasing function of mitochondria and catalyzes the production of reactive oxygen species, which leads to oxidative stress. Some reports indicate NPS can affect the physiology of immune competence and even of stem cells, which is of great importance for such crucial biological phenomena as the immunity and fertility of organisms. Taking into consideration all of the above and the fact of growing exposure of human bodies to increasing doses of nanoparticles, there is a real need for evaluating the potential risks of using nanosilver in our everyday lives.
Keywords: silver nanoparticles, cytotoxicity, in vitro