Osteoarthritis (OA) is a common cause of lameness, pain, and dysfunction in dogs and is estimated to affect >20% of all dogs over 1 year of age (2). Cartilage breakdown products, resulting from mechanical or enzymatic destruction, induce the release of inflammatory cytokines (e.g., interleukin (IL-1, IL-6) or tumor necrosis factor (TNF-α)) by macrophages and chondrocytes, leading to the upregulation of matrix metalloproteinases (MMPs), nitric oxide (NO), and other proteolytic enzymes. Synovial macrophages play a role in triggering inflammatory and destructive conditions through the production of IL-1β and TNF-α, which stimulate chondrocytes to produce inflammatory mediators. IL-1β and TNF-α are the main inflammatory factors involved in OA, with IL-1β driving tissue destruction and TNF-α being associated with inflammation (1, 3). In addition, other cytokines have also been implicated, including IL-6, IL-15, IL-17, IL-18, IL-21, leukemia inhibitory factor, and IL-8 (a chemokine) (1, 4).

Platelet-rich plasma (PRP) is a concentrated source of autologous platelets, which contains several different growth factors (platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF-β1), epidermal growth factor (EGF), and vascular endothelial growth factor (VEGF)) and other cytokines that can stimulate the healing of soft tissue (8, 10). Intra-articular injection of autologous platelet-rich plasma concentrate to treat dogs with osteoarthritis. Twenty dogs with osteoarthritis (OA) were used as a materials. Fourteen dogs were used as a platelet-rich plasma (PRP) treatment group and 6 dogs were used as a control (0.9% NaCl. PRP was obtained by the double centrifuge method. Affected joints were examined by radiography and ultrasonography. Lameness and pain severity were evaluated by attending clinicians. Samples were collected under sterile conditions at pre-treatment, days 1, 3, 5, 7, 15, and weeks 4, 8, and 12. The marker levels were determined by an enzyme-linked immunosorbent assay. No adverse effects of the injection of platelet concentrate or saline solution were observed. No significant differences were found in the Hudson Visual Analog Scale and Canine Brief Pain Inventory scores between weeks 0, 4, and 12 in the control dogs. No significant changes were observed in IL-1β, IL-6, IL-10, TNF-α, and PG-E2 levels (P > 0.05) in synovial fluid from the PRP treatment group compared to synovial fluid from the control group, although fluctuations in parameter levels were observed in both groups. Despite some variable results in inflammatory parameters, clinical improvement was recorded in the PRP-treated group. PRP injection could be an effective and safe method for treatment of dogs with osteoarthritis.
(11). There is a relative lack of information regarding the efficacy of intra-articular PRP in the treatment of OA in dogs.

The aim of the present study was to determine the levels of cytokines and inflammatory mediators (IL-1β, IL-6, IL-10, TNF-α, and PG-E₂) in synovial fluid samples from OA joints and to assess the efficacy of a single intra-articular injection of APC in the treatment of OA in dogs.

**Material and methods**

**Study design.** Twenty dogs (weighing 25 to 50 kg, mean age 8.6 years) with unilateral stifle OA were used in the current study. The study was conducted as a randomized, controlled trial in the Department of Surgery, Faculty of Veterinary Medicine, University of Selcuk. The study design followed published guidelines and was approved by the institutional Animal Care and Use Committee of the Faculty of Veterinary Medicine. At the time of study enrollment, 14 dogs were assigned PRP treatment, and six dogs were used as a control group (0.9% saline). The dogs had clinical evidence of unilateral lameness with the cause localized to a single joint. OA was classified as primary or secondary, depending on the cause. Secondary OA was diagnosed when abnormalities causing joint instability (e.g., cranial cruciate ligament rupture) were evident. Dogs with suspected meniscal damage were excluded from the study. Only dogs with no previous treatment, including administration of nutritional supplements, were included in the study. The affected joint was examined by radiography and ultrasonography. Scores for severity of lameness and pain were assigned by an attending veterinarian in the clinic.

**Radiographic examination.** Affected joints were examined radiographically at pre-treatment and weeks 4, 8, 12. In the assessment of joints, particular attention was paid to increased synovial fluid volume, displacement of the infrapatellar fat pad, enthesophyte formation, periarticular soft tissue. For all twenty dogs, OA was classified as mild (1), moderate (2), moderate to severe (2 to 3), or severe (3) as previously described (3).

**Ultrasonographic examinations.** Sonographic examination of full-weight-bearing dogs was performed at pre-treatment and weeks 4, 8, and 12. A diagnostic ultrasound machine (Esaote Piemedical, Model 410477) with a 5-7.5 MHz convex transducer was used to image the joint both in sagittal and transverse planes for all the dogs.

**Evaluation of lameness and pain.** Lameness and pain assessments were performed at pre-treatment, days 1, 3, 5, 7, 15, and weeks 4, 8, and 12. The Hudson Visual Analog Scale (HV AS) (13) and Canine Brief Pain Inventory (CBPI) (5, 6) were used in assessing the scores for severity of lameness and pain. The study was managed in a blind manner. Each dog was always assessed by the same veterinarian.

**Preparation and administration of autologous PRP.** After these initial evaluations had been completed, dogs in the treatment group were sedated with propofol (4-7 mg/IV) and a 20 cc blood sample was obtained from each dog by jugular vein puncture. PRP was prepared by the buffy-coat method. Five ml of blood was collected into each tubes in combination with Na-citrate. A double centrifuge method was used to obtain PRP. Initially, the blood was centrifuged at 96 g for 10 min, and plasma was carefully removed from the centrifuge tube, followed by a second spin at 380 g for 20 min. Platelets were collected from the buffy coat. All blood samples were sent to the hematology laboratory for platelet, white blood cell (WBC) and hematocrit (hct) analysis. Platelet concentrate was filtered and injected until sufficient resistance to push back the syringe plunger was reached (mean injection 3-5 ml depending upon the weight of the dog). For the dogs in the control group, arthrocentesis was performed as described for dogs in the treatment group, and saline solution was injected in a similar manner to the PRP.

**Synovial fluid.** Synovial fluid was collected under sterile conditions at pre-treatment, days 1, 3, 5, 7, 15, and weeks 4, 8, and 12. Although a slight contamination with blood was inevitable, severely contaminated samples (by gross appearance) were discarded and not used for the biochemical marker assays. Synovial fluid samples were subjected to routine cytological analysis and then centrifuged at 5,000 g for 5 min to remove cells and debris. The samples were stored in aliquots at ~80°C.

**ELISA.** The synovial samples were aliquoted and stored at ~80°C until used. Double sandwich ELISA protocols were used for IL-1β (Cat. No: 201-15-0171), IL-6 (Cat. No: 201-15-0128), IL-10 (Cat.No:201-15-0125), TNF-α (Cat. No: 201-15-0019) (Sun-Red Biological Technology Co., Ltd, Shanghai) and PG-E₂ (Cat. No: MBS705363, My BioSource, USA). The detection ranges of the assay were 0.3-70 pg/ml for IL-1β, 0.05-15 pg/ml for IL-6, 0.5-150 ng/ml for IL-10, 0.03-9 pg/ml for TNF-α and 31.25-2000 pg/ml for PG-E₂, as reported by the manufacturers.

**Statistical analyses.** Using the computer-based Minitab program for the analysis of IL-1β, IL-6, IL-10, TNF-α, and PG-E₂, the general linear model was used over the normal distribution values by the Anderson-Darling test. P < 0.05 was regarded as statistically significant. In addition, parametric data obtained from the control (saline-injected) and experimental (PRP treatment) group animals were evaluated as mean ± SE. Results were interpreted by ANOVA and Tukey test (SPSS 19.0). A value of P < 0.05 was again regarded as significant.

**Results and discussion**

The dogs used in this study included a mix of breeds representing a variety of medium to large breeds. Body weight was ~40 kg, and age ranged from 8 to 10 years. We observed no adverse effects associated with injection of platelet concentrate or saline solution.

Radiographic OA scores at the pre-treatment examination revealed that nine dogs had moderate OA (radiographic grade 2), seven had moderate to severe OA (radiographic grade 2-3), and four had severe OA (radiographic grade 3). For all dogs, radiographic scores assigned at week 12 were the same as scores assigned at pre-treatment.

**Ultrasonographic evaluations.** Many cases showed capsular distension with effusion, filled with inflammatory liquid effusion and, as a result, clearly or indistinctly demarcated from the periarticular soft tissue. It was difficult to examine the articular cartilage because of the adjacent bone. Ultrasound examination of all joints (included in the study) revealed an increasing effusion
with thick and moderate homogeneous echoic structure at day 0.

**Platelet count, WBC count, and Hct.** The platelet count in the concentrates (mean 1.420.000 platelets/µL) was significantly higher than the platelet count in the blood samples, representing a 3- or 4-fold increase in platelet count. The WBC count (1.09 mcL) for the platelet concentrates was significantly decreased. Hct for the platelet concentrates was significantly lower than Hct for the blood samples.

**Lameness evaluation.** The HVAS and CBPI scores were determined by the clinicians for all components. For the dogs in the PRP group, the HVAS components (mood, attitude, comfort, activity, playfulness, exercise, and walking comfort), and the CBPI components (pain, general activity, the ability to enjoy life, rise, walk, run, and climb) were significantly different between pre-treatment and week 4 (P < 0.05), week 8 (P < 0.05), and week 12 (P < 0.05).

**ELISA results.** Changes in synovial IL-1β, IL-6, IL-10, TNF-α, and PG-E₂ levels in the group injected with saline (0.9%) and in the PRP treatment group are presented in Figures 1, 2, 3, 4, and 5, respectively.

In synovial fluid from osteoarthritic dogs, IL-1β, IL-6, IL-10, TNF-α, and PG-E₂ concentrations (P > 0.05) did not undergo statistically significant changes in either the control or the PRP treatment groups, although fluctuations in all of these parameters were observed.
Several inflammatory mediators (IL-1β, IL-6, TNF-α, and PG-E₂) increase in OA (7, 12, 14). We believe that as Fahie et al. (9) previously described.

In this study, it was determined that all inflammatory mediators fluctuated in the synovial fluid in the control and PRP groups. This fluctuation may have contributed to the persisting inflammatory symptoms, but the TNF-α ratio was slightly decreased during the first week after PRP administration. In addition, PRP contains a large amount of stem cells (16). Previous studies have demonstrated a correlation between a TNF-α increase in joint fluid and the OA pain score (17). The decreased synthesis of TNF-α, which is not statistically significant even in a short period of time, explains one of the mechanisms of PRP in joint tissues and clinical practice (17). It has been noted that the suppression of TNF-α synthesis reduces pain. It is responsible for the removal of inflammatory debris, shock absorption, lubrication, and the inflammatory conditioning of catabolic cytokines (19). IL-6 has been demonstrated to be elevated in OA joint fluid, particularly in acute conditions (18, 19). In the PRP group, IL-6 concentration slightly decreased within the first days after injection, but increases were observed at the end of the 14th day. IL-6 reached peak levels on day 14 after PRP administration and on day 7 after saline injection. IL-6 concentration has been demonstrated to decrease in late OA (18). Because, IL-6 has a pro-inflammatory effect (21).

In this study, there were also no statistically significant increases in IL-10 levels in the control and PRP groups. IL-10 synthesis plays a role in the suppression of IL-1β and TNF-α synthesis during disease process. In the present study, we observed the lowest IL-10 level different rates in all dogs with OA in both groups because the samples were obtained at different stages of OA, rather than at standardized times, as in an experimental study by Venn et al. (20).

In the present study, we observed the lowest IL-10 level on day 14 after PRP administration and on day 7 after saline injection. IL-6 concentration has been demonstrated to decrease in late OA (18). Because, IL-6 has a pro-inflammatory effect (21).

In this study, there were also no statistically significant increases in IL-10 levels in the control and PRP groups. IL-10 synthesis plays a role in the suppression of IL-1β and TNF-α synthesis during disease process. In the present study, we observed the lowest IL-10 level

### Table 1. Changes in parameter levels in saline-injected group (mean ± SE). IL-1β, IL-6, IL-10, TNF-α, and PG-E₂ concentrations (P > 0.05) showed no statistically significant changes in the control groups, although fluctuations in all parameters were observed

<table>
<thead>
<tr>
<th>Parameters</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>14</th>
<th>30</th>
<th>60</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1β (pg/ml)</td>
<td>83.4 ± 33.2</td>
<td>38.4 ± 13.9</td>
<td>41.1 ± 7.86</td>
<td>53.1 ± 18.0</td>
<td>51.0 ± 5.59</td>
<td>39.4 ± 13.9</td>
<td>27.7 ± 4.10</td>
<td>19.4 ± 3.19</td>
<td>20.38 ± 3.18</td>
</tr>
<tr>
<td>IL-6 (pg/ml)</td>
<td>10.3 ± 4.62</td>
<td>4.12 ± 2.16</td>
<td>4.06 ± 0.99</td>
<td>6.43 ± 2.50</td>
<td>5.35 ± 0.98</td>
<td>4.03 ± 1.48</td>
<td>2.64 ± 0.55</td>
<td>2.13 ± 0.62</td>
<td>2.32 ± 0.66</td>
</tr>
<tr>
<td>IL-10 (ng/l)</td>
<td>87.8 ± 41.3</td>
<td>39.2 ± 17.2</td>
<td>38.2 ± 13.8</td>
<td>66.3 ± 27.6</td>
<td>50.9 ± 7.77</td>
<td>28.3 ± 15</td>
<td>19.0 ± 4.40</td>
<td>8.72 ± 5.62</td>
<td>20.8 ± 5.49</td>
</tr>
<tr>
<td>TNF-α (pg/ml)</td>
<td>10.8 ± 4.57</td>
<td>4.89 ± 2.09</td>
<td>4.61 ± 1.03</td>
<td>6.44 ± 2.40</td>
<td>5.26 ± 0.49</td>
<td>5.18 ± 2.02</td>
<td>3.05 ± 0.57</td>
<td>2.27 ± 0.56</td>
<td>2.24 ± 0.69</td>
</tr>
<tr>
<td>PG-E₂ (pg/ml)</td>
<td>14.7 ± 6.54</td>
<td>54.0 ± 32.9</td>
<td>102 ± 45.8</td>
<td>1885 ± 921</td>
<td>17.9 ± 10.05</td>
<td>94.4 ± 51.1</td>
<td>32.7 ± 20.0</td>
<td>45.9 ± 15.4</td>
<td>42.3 ± 24.5</td>
</tr>
</tbody>
</table>

Explanation: no statistical difference was determined in the same line (P > 0.05)

### Table 2. Changes in parameter levels in PRP-injected groups (mean ± SE). IL-1β, IL-6, IL-10, TNF-α and PG-E₂, concentrations (P > 0.05) showed no statistically significant changes in the PRP groups, although fluctuations in all parameters were observed

<table>
<thead>
<tr>
<th>Parameters</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>14</th>
<th>30</th>
<th>60</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1β (pg/ml)</td>
<td>16.7 ± 4.02</td>
<td>7.39 ± 2.04</td>
<td>12.3 ± 2.74</td>
<td>13.3 ± 2.70</td>
<td>15.5 ± 4.68</td>
<td>19.2 ± 3.80</td>
<td>15.9 ± 4.48</td>
<td>9.09 ± 2.90</td>
<td>13.4 ± 3.67</td>
</tr>
<tr>
<td>IL-6 (pg/ml)</td>
<td>3.16 ± 0.48</td>
<td>2.42 ± 0.40</td>
<td>3.16 ± 0.47</td>
<td>3.58 ± 0.70</td>
<td>3.71 ± 0.80</td>
<td>5.13 ± 1.04</td>
<td>3.13 ± 0.62</td>
<td>3.31 ± 0.77</td>
<td>3.63 ± 0.81</td>
</tr>
<tr>
<td>IL-10 (ng/l)</td>
<td>37.6 ± 4.28</td>
<td>32.1 ± 5.47</td>
<td>39.9 ± 5.69</td>
<td>40.5 ± 7.30</td>
<td>48.0 ± 9.16</td>
<td>40.0 ± 7.97</td>
<td>27.2 ± 4.01</td>
<td>32.0 ± 4.98</td>
<td>39.5 ± 9.36</td>
</tr>
<tr>
<td>TNF-α (pg/ml)</td>
<td>2.30 ± 0.46</td>
<td>1.28 ± 0.16</td>
<td>1.66 ± 0.23</td>
<td>2.17 ± 0.44</td>
<td>2.21 ± 0.30</td>
<td>2.96 ± 0.43</td>
<td>2.61 ± 0.55</td>
<td>3.23 ± 0.72</td>
<td>2.57 ± 0.49</td>
</tr>
<tr>
<td>PG-E₂ (pg/ml)</td>
<td>4.37 ± 0.39</td>
<td>7.94 ± 1.60</td>
<td>12.2 ± 2.89</td>
<td>8.70 ± 1.68</td>
<td>7.00 ± 1.37</td>
<td>4.16 ± 0.35</td>
<td>14.0 ± 3.65</td>
<td>4.17 ± 0.31</td>
<td>7.11 ± 1.09</td>
</tr>
</tbody>
</table>

Explanation: as in Tab. 1.
on day 60 (8.72 ± 5.62 ng/ml) in the control group, whereas the minimum level of IL-10 in the PRP group was 27.2 ± 4.01 ng/ml. It was found that TNF-α and PG-E, activity decreased in 6 out of 14 (42.8%) dogs when evaluated individually in the PRP group. In particular, it seems that PRP should be administered more frequently at specific intervals in order to prevent a slight rise in TNF-α after the fifth day, since TNF-α plays an important role in the onset of inflammatory reactions in the joint. However, the inflammatory mediators were unexpected high in the saline group compared to the PRP group. This is because the control group received an injection of 3-5 ml of saline solution, which caused the inflammatory mediators to be diluted in the synovial fluid. For this reason, a significant reductions in markers occurred from day 1 post-surgery in the control group. However, this decrease lasted for five days, and then the parameters increased again. Therefore, dilution effects should always be considered (18). In the present study, PG-E, levels increased markedly in the control group (from 14.7 ± 6.54 to 1885 ± 921), although they fluctuated in both groups. This finding suggests that PRP treatment can prevent increasing PG-E, levels, but not significantly.

Dogs receiving PRP improved clinically, but the radiographic scores assigned at week 12 were the same as the scores assigned at pre-treatment. The ultrasonography examination confirmed a decrease in effusion in the joint. Although our study indicates that lameness in the saline-injected group abated at day 5, lameness improvement was recorded in the PRP-treated group. This is because the control group received an injection of 3-5 ml of saline solution, which caused the inflammatory mediators to be diluted in the synovial fluid. For this reason, a significant reductions in markers occurred from day 1 post-surgery in the control group. However, this decrease lasted for five days, and then the parameters increased again. Therefore, dilution effects should always be considered (18). In the present study, PG-E, levels increased markedly in the control group (from 14.7 ± 6.54 to 1885 ± 921), although they fluctuated in both groups. This finding suggests that PRP treatment can prevent increasing PG-E, levels, but not significantly.

The study, PG-E, levels increased markedly in the control group (from 14.7 ± 6.54 to 1885 ± 921), although they fluctuated in both groups. This finding suggests that PRP treatment can prevent increasing PG-E, levels, but not significantly.

Dogs receiving PRP improved clinically, but the radiographic scores assigned at week 12 were the same as the scores assigned at pre-treatment. The ultrasonography examination confirmed a decrease in effusion in the joint. Although our study indicates that lameness in the saline-injected group abated at day 5, lameness improvement was recorded in the PRP-treated group. This is because the control group received an injection of 3-5 ml of saline solution, which caused the inflammatory mediators to be diluted in the synovial fluid. For this reason, a significant reductions in markers occurred from day 1 post-surgery in the control group. However, this decrease lasted for five days, and then the parameters increased again. Therefore, dilution effects should always be considered (18). In the present study, PG-E, levels increased markedly in the control group (from 14.7 ± 6.54 to 1885 ± 921), although they fluctuated in both groups. This finding suggests that PRP treatment can prevent increasing PG-E, levels, but not significantly.

The study, PG-E, levels increased markedly in the control group (from 14.7 ± 6.54 to 1885 ± 921), although they fluctuated in both groups. This finding suggests that PRP treatment can prevent increasing PG-E, levels, but not significantly.

Dogs receiving PRP improved clinically, but the radiographic scores assigned at week 12 were the same as the scores assigned at pre-treatment. The ultrasonography examination confirmed a decrease in effusion in the joint. Although our study indicates that lameness in the saline-injected group abated at day 5, lameness improvement was recorded in the PRP-treated group. This is because the control group received an injection of 3-5 ml of saline solution, which caused the inflammatory mediators to be diluted in the synovial fluid. For this reason, a significant reductions in markers occurred from day 1 post-surgery in the control group. However, this decrease lasted for five days, and then the parameters increased again. Therefore, dilution effects should always be considered (18). In the present study, PG-E, levels increased markedly in the control group (from 14.7 ± 6.54 to 1885 ± 921), although they fluctuated in both groups. This finding suggests that PRP treatment can prevent increasing PG-E, levels, but not significantly.

The study, PG-E, levels increased markedly in the control group (from 14.7 ± 6.54 to 1885 ± 921), although they fluctuated in both groups. This finding suggests that PRP treatment can prevent increasing PG-E, levels, but not significantly.

Dogs receiving PRP improved clinically, but the radiographic scores assigned at week 12 were the same as the scores assigned at pre-treatment. The ultrasonography examination confirmed a decrease in effusion in the joint. Although our study indicates that lameness in the saline-injected group abated at day 5, lameness improvement was recorded in the PRP-treated group. This is because the control group received an injection of 3-5 ml of saline solution, which caused the inflammatory mediators to be diluted in the synovial fluid. For this reason, a significant reductions in markers occurred from day 1 post-surgery in the control group. However, this decrease lasted for five days, and then the parameters increased again. Therefore, dilution effects should always be considered (18). In the present study, PG-E, levels increased markedly in the control group (from 14.7 ± 6.54 to 1885 ± 921), although they fluctuated in both groups. This finding suggests that PRP treatment can prevent increasing PG-E, levels, but not significantly.

The study, PG-E, levels increased markedly in the control group (from 14.7 ± 6.54 to 1885 ± 921), although they fluctuated in both groups. This finding suggests that PRP treatment can prevent increasing PG-E, levels, but not significantly.

Dogs receiving PRP improved clinically, but the radiographic scores assigned at week 12 were the same as the scores assigned at pre-treatment. The ultrasonography examination confirmed a decrease in effusion in the joint. Although our study indicates that lameness in the saline-injected group abated at day 5, lameness improvement was recorded in the PRP-treated group. This is because the control group received an injection of 3-5 ml of saline solution, which caused the inflammatory mediators to be diluted in the synovial fluid. For this reason, a significant reductions in markers occurred from day 1 post-surgery in the control group. However, this decrease lasted for five days, and then the parameters increased again. Therefore, dilution effects should always be considered (18). In the present study, PG-E, levels increased markedly in the control group (from 14.7 ± 6.54 to 1885 ± 921), although they fluctuated in both groups. This finding suggests that PRP treatment can prevent increasing PG-E, levels, but not significantly.