Opis przypadku

Case report

A case of mastitis in an allomother mongrel bitch nursing a jaguar cub

IOSIF VASIU1, ROMAN DĄBROWSKI2, LIVIU TODESCU3, EMANUEL MIHAI MOCANU4, MARIOLA BOCHNIARZ2, MAREK SZCZUBIAŁ2, MARKO SAMARDZIJA5, NICODIM IOSIF FIT6, FLORINEL GHEORGHE BRUDAŞCĂ1, ASTA TVARIJONAVICIUTE7

1Department of Infectious Diseases, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
2Department and Clinic of Animal Reproduction, University of Life Sciences, Głęboka 30, 20-612 Lublin, Poland
3Sibiu Zoological garden, Calea Dumbrăvii 142, 550399 Sibiu, Romania
4Fia Vet, Fragilor 1, 550246 Sibiu, Romania
5Clinic for Obstetrics and Reproduction, University of Zagreb, Republike Hrvatske 14, 10000 Zagreb, Croatia
6Department of Microbiology and Immunology, University of Agricultural Science and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
7Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, Campus Universitario 11, 30100 Murcia, Spain

Received 19.01.2022 Accepted 21.02.2022

Vasiu I., Dąbrowski R., Todescu L., Mocanu E. M., Bochniarz M., Szczubiał M., Samardzija M., Fit N. I., Brudaşcă F. G., Tvarijonaviciute A.

A case of mastitis in an allomother mongrel bitch nursing a jaguar cub

Summary

Allonursing is typical in mammals, especially in the polytocous taxa with large litters. One of the immediate benefits of allonursing is milk evacuation of distended mammary glands, especially in females who lost their offspring, predisposing them to mastitis. Mastitis represents the inflammation of the mammary gland and in carnivores it can affect a section of the gland or the entire mammary tissue (13). Therefore, it is considered an emergency (2, 15) since if left untreated mastitis can suffer local and systemic complications like mammary gangrene, septicemia, or neonatal mortality. This case report presents a mastitis episode in an allomothering mongrel bitch after starting to allonurse a one-day-old jaguar cub and her single puppy. Laboratory assays showed the presence of mild leukocytosis, folded milk C-reactive protein (CRP; 5.1 µg/mL) levels, an alkaline milk pH reaction (pH > 7), increased cell counts, phagocytosis, and presence of Staphylococcus aureus and Enterococcus faecalis in the cultured milk samples.

Keywords: allonursing, bitch, mastitis, milk CRP, jaguar cub

Allomothering is typical in many mammalian species (3, 31). It is common, especially in matriarchal societies (16, 24), where the litter is assisted and protected by siblings and family members. It is more often encountered in dogs, cats, and pigs (polytocous taxa), than in primates, ruminants, or bats (monotocous taxa) (3). Allonursing can also be an artifact of disturbances, crowding, or captivity, as it is more commonly encountered in captive individuals, including in Zoo animals (3).

In monotocous taxa, especially in animals that live in large groups, allonursing is typically associated with milk theft (parasitism). The lower level of allonursing may result from a decreased tolerance towards non-offspring by the lactating females. This form of parasitism is not readily signaled in the polytocous taxa, where communal nursing may be restricted to polytocous animals that live in smaller groups but with large litters (3).

Many hypotheses are concerned with explaining this behavior in nursing females. As litter size increases, it may be more difficult for females to recognize their offspring or restrict nursing access only to them. Polytocous females may be more tolerant because allonursing costs decrease with increasing litter size. However, the incidence of non-offspring nursing in polytocous species declines as group size increases (3). To improve their maternal skill, inexperienced females who lost their litter or have pseudopregnancy nurse alien offspring. Allomothering is also highly beneficial for these females since it helps evacuate leftover milk, reduce intra-mammary pressure and...
pain, and avoid mammary gland pathologies such as mastitis (3, 24, 31, 45). However, in some cases, the habits and behavior of the pups for milk sucking can be physically too aggressive and can cause mammary gland injuries.

Mastitis is one of the most common reproductive disorders in bitches. It has a wide variety of forms, from non-septic galactostasis to septic, acute, gangrenous, or chronic inflammation, causing from subclinical to severe systemic illness (39). The diagnosis of mastitis is based on medical history, clinical examination, and additional laboratory assays like milk pH, cytology, and serum/milk CRP evaluation (38).

Even though one of the main benefits of allonursing is to avoid increased mammary gland pressure by leftover milk or local inflammation and infection, this report describes a clinical case of bilateral abdominal mastitis in an allomother mongrel bitch, that allonursed a jaguar cub, pointing out that mammary discomfort or mastitis can occur in allomothers as well.

Case report

Starting from the third day postpartum, a 4-year-old healthy, 20 kg, dewormed and vaccinated, multiparous mongrel bitch allonursed a one-day-old captive-born male jaguar cub in a Zoo from Southern Transylvania, Romania, along with her single born pup. The allosuckler was fed until the jaguar cub nor the pup showed any clinical signs of illness. The allosuckler was fed until the jaguar cub nor the pup showed any clinical signs of illness.

For biochemical assays, the UV-VIS Screen Master Touch Spectrophotometer analyzer (Hospitex Diagnostix, Med. Weter. 2022, 78 (5), 249-252 Fiorentino, Italy) was used. The blood was left to clot at room temperature for 30 min and then centrifuged (1200 × g, 15 min) to obtain serum. The milk samples were centrifuged (21,000 × g, 30 min, 4°C) to remove fat (37). For serum Haptoglobin (Hp), a commercial Enzyme-Linked Immunosorbert Assay kit (ELISA; Tridelta Development Limited, Ireland) was used, according to the manufacturer’s instructions and guidelines. Both serum and milk CRP levels were determined using the TR-IFMA method (27).

Milk smears were performed using the “squash” and May-Grünwald Giemsa (MGG) (E. Merck, Darmstadt, Germany) techniques. The milk pH was evaluated with litmus paper (E. Merk, Darmstadt, Germany) (38, 43). Standard microbiological tests were used to isolate and differentiate bacterial pathogens. Milk samples were plated on 5% sheep blood, Chapman, and MacConkey agars (Oxoid Limited, Hampshire, UK) after a 24-72 h incubation at 37°C (21, 33). According to the manufacturer’s instructions and guidelines, bacterial isolates were identified with commercial Vitek2 GP kits (BioMérieux, l’Étoile, France).

Preventive treatment measures were adopted by monitoring pups and the bitch during and after feeding following previously recommended guidelines (4, 11, 15, 29, 39, 44). In brief, the hair around the teats of the mammary glands was shaved, local warm compresses were applied over the affected areas, and the glands were covered to prevent further excoriation by offspring nails during feeding.

Blood tests showed the presence of mild leukocytosis with monocytopenia and eosinophilia without significant alteration in serum biochemistry (Tab. 1 and 2). Milk analysis revealed an alkaline milk pH (> 7), a folded milk CRP level, and the presence of an increased number of foamy cells, macrophages, cellular debris, and neutrophils.

Tab. 1. Haematological values

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Values</th>
<th>Reference range</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC (10⁶/l)</td>
<td>6.00</td>
<td>5.50-8.50</td>
</tr>
<tr>
<td>HGB (g/l)</td>
<td>125</td>
<td>120-180</td>
</tr>
<tr>
<td>HCT (%)</td>
<td>39.60</td>
<td>37-55</td>
</tr>
<tr>
<td>MCV (fl)</td>
<td>75</td>
<td>60-77</td>
</tr>
<tr>
<td>MCH (Pg)</td>
<td>23.70</td>
<td>19.50-24.50</td>
</tr>
<tr>
<td>MCHC (g/l)</td>
<td>316</td>
<td>310-340</td>
</tr>
<tr>
<td>PLT (10⁹/l)</td>
<td>273</td>
<td>200-500</td>
</tr>
<tr>
<td>WBC (10⁶/l)</td>
<td>18</td>
<td>6-17</td>
</tr>
<tr>
<td>Band N (%)</td>
<td>1</td>
<td>0-3</td>
</tr>
<tr>
<td>Segmented N (%)</td>
<td>67</td>
<td>58-85</td>
</tr>
<tr>
<td>L (%)</td>
<td>14</td>
<td>8-21</td>
</tr>
<tr>
<td>M (%)</td>
<td>1</td>
<td>2-10</td>
</tr>
<tr>
<td>E (%)</td>
<td>17</td>
<td>3-9</td>
</tr>
<tr>
<td>B (%)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Explanations: WBC – white blood cells; RBC – red blood cells; HGB – hemoglobin; HCT – hematocrit; MCV – medium cell volume; MCH – mean corpuscular hemoglobin; MCHC – mean corpuscular hemoglobin concentration; PLT – platelets; N – neutrophils; L – lymphocytes; M – monocytes; E – eosinophils; B – basophils; L – decreased value; H – increased value.
with engulfed bacteria on the milk smears of both milk samples (Tab. 3).

Moreover, *S. aureus* and *E. faecalis* were isolated from both milk samples. Overall, these data indicate the presence of acute mastitis due to ascending infection in both tested mammary glands.

Results and discussion

Medical history, clinical examinations, and additional laboratory findings confirmed the presence of acute mastitis. Mammary gland inflammation is a common mammary gland pathology in carnivores and is usually caused by ascending or descending glandular infections (8, 10, 39). The ascending path of infection is caused by the presence of skin lesions on the mammae’s surface, produced by the nurslings, during suckling, with their nails, or after biting the nipples, or by unsanitary dwelling conditions, which will favor the infection through the milk ducts, into the mammae’s parenchyma (10, 14, 39).

In the present case, the diagnosis of mastitis was confirmed by milk analysis (pH, cytology, CRP, and microbiology) in agreement with previous reports (1, 12, 25, 32, 38, 41, 43). On the other hand, no systemic alterations were observed on physical or laboratory examinations except for a mild leukocytosis due to eosinophilia. Eosinophilia is a common finding in dogs in response to tissue damage (23). Therefore, the mammary cutaneous tegumentary lesions could cause the detected eosinophilia in the current case.

Our findings are consistent with other reported results (37), where folded levels of both milk and serum CRP were detected. However, only the milk CRP level was significantly folded in the current case, suggesting that the inflammatory processes were detected early before any other systemic reactions occurred. Therefore, to diagnose and accurately manage different reproductive disorders, including mastitis, the determination of the acute-phase protein’s response is recommended (5-7, 37).

Usually mastitis in bitches is caused by monoinfections with *Streptococcus canis*, *S. intermedius*, *S. epidermidis*, *S. pseudintermedius*, *Escherichia coli*, *Pseudomonas aeruginosa*, *Proteus mirabilis*, or *Klebsiella pneumoniae* (9, 33, 35, 36, 39, 40). However, coinfections between *S. aureus* and *S. intermedius*, or between other types of bacterial strains, had also been reported (33, 35, 40, 41). In the present case, a bilateral acute mammary infection was identified in the allomother, caused by a coinfection of the caudal abdominal mammary glands with *S. aureus* and *E. faecalis*.

Mammary infections with *S. aureus* or *E. faecalis* are responsible for the onset of acute mastitis in lactating bitches (9, 18, 35, 36) and septicemia and mortality in the suckling puppies (20, 33, 41, 46). Moreover, approximately 65% of the bacterial infections of the puppies are responsible for neonatal deaths (20), thus highlighting the role that bacterial translocation can play in carnivore neonatal mortality and the importance of early detection and treatment of mastitis in female dogs.

Alloparenting, including allonursing, is reported in most wild *Canis* spp. (17). Moreover, it is typical, atavistic behavior in domestic dogs (26, 28) and is much more common in bitches related to each other (30), reported in more than 60% of the litters from home or kennel-raised individuals (28). Moreover, if required, allonursing can be easier implemented by the breeders, in the first weeks postpartum (30).

In the current case, the paradigm consists in the development of mastitis in the allomother bitch, which might have been caused by the presence of the scratch marks observed on the mammary gland surface, due to the nursing behavior of both sucklings, especially by the alien jaguar cub, that alone or together might have caused the cutaneous damage during feeding. Moreover, the mammary infection might have also been favored by the mismatch between the copious milk production and the low number of litter, causing the buildup of milk in the lactating mammary glands (13, 43).

Overall it can be concluded that allomothering is not a risk-free phenomenon. The presence of mastitis is not neglectable. Nevertheless, in every clinical case of mammary infection, extra care should be provided to both the cubs and allomothers to prevent possible complications, especially when orphanded, endangered, or wild cubs from zoos or rehabilitation centers are implied.

References
