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The detection and management of respiratory dis-
eases in cattle remain a significant challenge in vet-
erinary medicine, primarily due to their complex and 
multifactorial nature, encompassing both infectious 
and non-infectious etiologies. Bovine Respiratory 
Disease Complex (BRDC) is a  condition involving 
multiple viral and bacterial pathogens compounded by 
environmental factors, such as nutritional and housing 
deficiencies. These interactions complicate both the 
diagnostic process and the effectiveness of treatment 
strategies (34). Traditional diagnostic methods for 
BRDC – largely reliant on the clinical assessment of 
individual animals – suffer from notable limitations 
in terms of objectivity and sensitivity. This has driven 
the search for approaches incorporating artificial intel-
ligence (AI) and ‘deep learning’ (a subset of machine 
learning), which align with modern technological ad-
vancements. The application of these tools in cattle has 
already made it possible to identify cases of respiratory 
disease faster and more accurately through clinical and 
imaging data analysis (30). The integrations of such 

advanced diagnostic methods is essential for mitigating 
economic losses in livestock production while simul-
taneously enhancing animal health and welfare (39). 
Technologies such as Precision Livestock Farming 
(PLF), which utilise real-time monitoring systems, are 
gaining increasing importance in modern herd manage-
ment. These innovative solutions accurately track the 
physiological and behavioural parameters of individual 
animals, facilitating the early detection of respiratory 
diseases and the implementation of more targeted 
interventions (38). Advanced monitoring technolo-
gies are capable of continuous health surveillance of 
individual animals, making it possible to improve their 
productive performance by timely interventions while 
eliminating subjective errors, common in the diagnosis 
of cattle diseases (21). Notably, the early and accurate 
diagnosis of pneumonia in calves makes it possible to 
immediately implement appropriate therapies, which 
can significantly reduce morbidity and mortality rates 
and, consequently, improve economic outcomes in 
cattle production systems (52). The integration of 
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suitable for continuous, non-invasive health monitoring under real-world production conditions. Integrated 
systems that combine acoustic, behavioural, imaging and molecular data, supported by predictive algorithms 
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a proactive model, focusing on the early detection of deviations from physiological norms, rather than solely 
responding to clinical signs. This development results in reduced antibiotic use, improved animal welfare and 
greater economic efficiency. The diagnostic model presented in this study reflects a systemic reorientation of 
contemporary veterinary medicine towards precise, automated solutions powered by machine learning.
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artificial intelligence techniques with traditional diag-
nostic methods (e.g., clinical examination) is helpful 
in identifying disease risk factors. Automation of the 
diagnostic process not only reduces human error, but 
also significantly shortens the time required to obtain 
results (2). An integrated diagnostic approach ensures 
a more comprehensive and precise ongoing assessment 
of calf health, thereby increasing the effectiveness of 
early diagnosis, disease surveillance and prognosis. 
Furthermore, the application of advanced monitoring 
technologies supports timely therapeutic decision-
making and helps eliminate the overuse of antibiotics 
in veterinary practice, an especially critical issue given 
the rising antibiotic resistance (40).

Basic diagnostic methods
Modern diagnostic techniques for respiratory dis-

eases in calves are derived from classical methods, 
which continue to serve as the foundation for the early 
detection of respiratory disorders and the evaluation of 
their clinical course. Auscultation of the thorax with 
a stethoscope in six anatomically defined auscultatory 
fields – three on each side – is one of the essential 
components of the comprehensive clinical examination 
performed by a licensed veterinarian. It can identify 
abnormal respiratory sounds, such as fine and coarse 
rales, wheezes or crackles, which may indicate inflam-
mation, airway obstruction or accumulation of exudate 
(6). However, auscultation should always be preceded 
and supported by a full clinical assessment, including 
anamnesis, evaluation of environmental conditions, 
general physical examination, measurement of vital 
signs and, if necessary, further laboratory or imaging 
diagnostics. In addition, the respiratory rate (RR) is 
commonly assessed, as a  non-invasive measure of 
respiratory function in calves. Deviations from the 
normal number of breaths per minute under resting 
conditions may provide an early identification of, the 
onset of an inflammatory process (37). To standard-
ize clinical evaluations, the Calf Respiratory Score 

(CRS) system is employed. This tool assesses five 
parameters: core body temperature (c.w.c), nasal and 
ocular discharge, coughing and ear position. Each 
parameter is scored on a scale from 0 to 3, providing 
an objective method for evaluating the severity of 
respiratory symptoms in individual animals (33). The 
CRS is particularly valuable for initial screening and 
for monitoring the respiratory health of calves within 
the herd. For a more precise structural assessment of 
the respiratory system, lung ultrasound (USG) is in-
creasingly employed as a first-line imaging modality 
in calf diagnostics (5). This technique offers a high-
resolution visualisation of the superficial layers of the 
pulmonary parenchyma, facilitating the identification 
of characteristic pathological changes, such as consoli-
dations or the presence of exudate (24). The lesions are 
typically graded on a scale from 0 to 5, providing an 
objective classification of the severity of the disease 
process. Necropsy, including a comprehensive patho-
morphological evaluation of the lungs, serves as the 
definitive reference stage in the diagnostic process. 
During necropsy, key pathological features are as-
sessed, including the presence of exudate, the degree 
of consolidation, necrotic foci and their topographical 
distribution within the lung parenchyma (15). The find-
ings obtained from necropsy serve as a benchmark for 
validating diagnostic techniques used in vivo and are 
essential for the retrospective evaluation of the effec-
tiveness of therapeutic and prophylactic interventions. 
A summary of the clinical characteristics of principal 
methods used to detect respiratory diseases in calves 
is presented in Table 1.

Despite their widespread use, classical diagnostic 
methods are imprecise, and their effectiveness largely 
depends on the examiner’s experience and prevailing 
environmental conditions (35). Techniques such as 
auscultation, ultrasonography, or clinical evaluation 
using the CRS rely on subjective interpretation of clini-
cal signs, which increases the risk of false-positive or 
false-negative results, particularly during the subclini-

Tab. 1. Basic diagnostic methods for BRD detection
Method Description Advantages Restrictions Source

Clinical evaluation (CRS – Calf 
Respiratory Scoring System)

Assessment of clinical signs (core 
body temperature, cough, nasal/
ocular discharge, ear and eye 
position) scored on a 0-3 scale

Safe, quick, and easy to perform 
under field conditions

Subjective assessment, low 
reproducibility, limited correlation 
with actual lung pathology

(33)

Chest auscultation Stethoscopic examination of six 
thoracic auscultation fields

Non-invasive, cost-effective, and 
provides immediate evaluation of 
respiratory function

Low sensitivity to small or deep 
pulmonary lesions; susceptible to 
environmental noise

(6)

Respiratory rate (RR) 
measurement

Counting breaths per minute under 
resting conditions

Capable of early detection of 
respiratory abnormalities; no 
specialised equipment required

Highly variable due to stress and 
environmental factors

(37)

Lung ultrasonography (LUS) Imaging of the lungs; 
classification of lesions on a scale 
from 0 to 5

High sensitivity for early detection 
of pulmonary lesions

Requires specialized equipment 
and training, limited in 
determining etiological factors

(24)

Post-mortem examination 
(Necropsy)

Morphological assessment of 
lungs after death

Provides precise and definitive 
classification of lesions

Cannot be used for in vivo 
diagnosis

(15)
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cal stages of disease. That is why modern diagnostic 
approaches based on artificial intelligence, machine 
learning and digital analysis of imaging, acoustic 
and genetic data are gaining increasing prominence. 
These technologies not only reduce the likelihood of 
diagnostic error, but also automate diagnostic pro-
cesses, thereby enhancing sensitivity, objectivity and 
reproducibility (47). AI-based systems are capable 
of detecting diagnostic patterns that may be imper-
ceptible with traditional methods, while real-time 
monitoring solutions can be used to identify disease 
at both individual and herd levels (23). With the rapid 
advancement of digital and bioinformatics tools, it is 
anticipated that traditional methods will gradually be 
supplanted by integrated diagnostic systems driven by 
data and algorithm-based decision-making (18). This 
transition from subjective clinical evaluation to precise, 
automated diagnostics represents not only progress, but 
also an evolution in response to the raising of standards 
for animal health and welfare (50).

Analysis of respiratory sounds
One of the most recent advancements in non-

invasive diagnostic methods in veterinary medicine 
is the acoustic signal analysis supported by artificial 
intelligence (AI). The initial stage of this technol-
ogy involves the recording and digital processing of 
acoustic data, such as coughing, respiratory murmurs 
or breathing rhythms. AI algorithms, particularly those 
based on machine learning, analyse the frequency, in-
tensity, amplitude and duration of sounds to assess the 
physiological condition of the animal (16). Research 
has shown that specific acoustic features, such as an 
increased number of coughs, an altered tonal quality 
of respiratory sounds or a higher frequency of high-
pitched components, are significant indicators of 
respiratory pathologies (7). The diagnostic value of 
this method is increased by the training of AI models 
on large, diverse datasets containing recordings from 
both healthy and diseased animals at various stages of 
illness (29). This approach makes it possible to detect 
subtle acoustic anomalies that may remain inaudible 

even to experienced veterinarians during conventional 
auscultation with a stethoscope.

The automation of sound signal processing and 
interpretation significantly enhances diagnostic effi-
ciency. It also facilitates the timely implementation of 
therapeutic interventions, which is particularly critical 
in the case of rapidly progressing diseases, such as 
pneumonia in calves (31). A practical example of this 
approach is the development of herd health monitoring 
systems equipped with acoustic sensors integrated with 
AI-based algorithms (29). These systems continuously 
analyse respiratory sounds, identify anomalies and 
generate alerts when abnormal patterns are detected. 
Moreover, such technologies can be integrated into 
farm management platforms, providing real-time 
updates on the health status of individual animals and 
supporting data-driven decision-making (25). The 
use of AI-driven acoustic analysis also extends to the 
assessment of animal welfare, as variations in sound 
patterns may indicate not only pathological conditions, 
but also environmental stressors, such as heat stress. 
Studies have shown that elevated ambient temperatures 
cause an increased respiratory rate (tachypnoea) and 
changes in the intensity and tonal quality of respiratory 
sounds in cattle (32, 45). Therefore, the integration of 
acoustic data with other physiological and environ-
mental parameters, such as body temperature, physical 
activity or humidity, may offer a comprehensive and 
proactive approach to herd health monitoring. This 
integrated method enhances the precision of early 
diagnosis and improves the effectiveness of both pre-
ventive and therapeutic interventions. The key acoustic 
parameters of respiratory signals in calves, as analysed 
by artificial intelligence, are summarised in Table 2.

Behavioural, physiological and genomic analysis
The detection of respiratory diseases in cattle 

through behavioural data analysis combined with 
machine learning algorithms operates in an integrated 
and precise manner. This system is based on the con-
tinuous monitoring of parameters such as individual 
feeding behaviour and physical activity (8). Sensors 

Tab. 2. Acoustic parameters of respiratory signals in calves analysed using artificial intelligence
Acoustic parameter Signal characteristics Diagnostic significance Source

Frequency (F0) Fundamental frequency of acoustic vibrations, 
expressed in Hz

Variability may indicate stress or increased 
muscular tension

(19)

Spectral slope Decline in signal energy with increasing frequency; 
balance of low vs. high frequencies

A steeper slope is associated with mucus 
accumulation and obstructive lesions

(16)

Decay time Time taken for the cough signal to return to baseline Prolongation suggests decreased lung elasticity (7)

Amplitude Modulation Index (AM rate) Frequency of amplitude variation in the respiratory 
signal (Hz)

Abnormal modulation may reflect irregular 
ventilation patterns

(25)

Duration of the expiratory cough 
component

Length of the exhalation phase in a single cough 
cycle (ms)

Extended duration is often observed in conditions 
such as pneumonia or bronchitis

(31)

Cepstral Coefficients (MFCC) Parameters representing the spectral shape of the 
signal

Variations in MFCC patterns correlate with disease 
type and progression stage

(7)
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and specialised recording devices based on advanced 
technologies can be used for ongoing surveillance of 
behavioural metrics, including feed intake frequency, 
physical activity levels and resting duration. Collected 
by MEMS (Micro-Electro-Mechanical Systems) 
accelerometers, automatic feeding stations with 
RFID (Radio Frequency Identification) technology 
and respiratory sensors, these data are subsequently 
processed and analysed using artificial intelligence 
algorithms, such as SVM (Support Vector Machine) 
and Random Forest (4). The key component of this 
system is the identification of behavioural patterns that 
deviate from established norms. AI models compare 
real-time behavioural data with reference profiles of 
healthy animals to detect anomalies indicative of early 
respiratory disease (26). For example, a combination 
of reduced physical activity, decreased rumination 
frequency and shortened feed intake time may suggest 
impaired respiratory function or the onset of inflam-
mation. When such deviations are detected, the system 
issues an alert, facilitating timely diagnostic and thera-
peutic interventions. The use of K-nearest neighbours 
(KNN) models has demonstrated success in predicting 
cases of BRDC up to six days before the appearance 
of clinical signs, with reported accuracies exceeding 
90% (9). Positive, correlations have also been observed 
in studies employing integrated monitoring systems 
that collect behavioural and physiological data using 
ear-mounted accelerometers to continuously record 
activity and chewing time (41). Table 3 summarises the 
key behavioural and physiological parameters, along 
with the associated monitoring technologies employed 
in the early detection of respiratory diseases in calves.

Another modern approach to the diagnosis of BRDC 
involves the analysis of genomic sequences of asso-
ciated pathogens using graph-based representations 
and deep neural networks. These advanced methods 
make it possible to identify specific pathogens on the 
basis of their unique DNA or RNA sequences, which 
is particularly valuable in cases of co-infection, where 
traditional diagnostic techniques may suffer from 
limited sensitivity and specificity. The application 

of k-mers and network embedding techniques has 
facilitated the effective identification of characteristic 
pathogen signatures (34). K-mers – short, overlap-
ping nucleotide fragments – serve as units of genomic 
analysis that capture unique features of the pathogen’s 
genetic material. The implementation of deep learning 
algorithms to process these fragments has significantly 
enhanced classification accuracy, achieving rates as 
high as 89.7% in the identification of BRDC-associated 
pathogens. Consequently, the integration of AI-based 
genomic analysis not only improves diagnostic ef-
ficiency, but also makes it possible to use predictive 
and personalised strategies in herd health management. 
Early identification of infected individuals, automation 
of population-level surveillance and seamless integra-
tion with farm management platforms, improve the 
quality of veterinary care. Furthermore, this approach 
promotes a more sustainable livestock management 
by reducing economic losses and the overuse of anti-
biotics (4).

Thermography
Infrared thermography (IRT) is a non-invasive and 

fully non-contact imaging technique capable of precise 
measurement of body surface temperature distribution 
by detecting thermal radiation emitted by the body 
(42). The application of this method in veterinary di-
agnostics, particularly in bovine respiratory diseases, 
has significant potential for the early detection of in-
flammatory responses (43). This is especially relevant 
in intensive production systems, where it is difficult 
to reduce antibiotic use while maintaining both ani-
mal welfare and herd health (27). The effectiveness 
of thermography for the early detection of infectious 
diseases in cattle was confirmed in a study involving 
an experimental calf infection model with bovine viral 
diarrhoea virus type 2 (BVDV-2) (42). Thermographic 
analysis revealed a statistically significant increase in 
surface temperature at various anatomical locations 
in infected animals, including the nostrils (mean in-
crease of 3.5°C), auricles (3.9°C), lateral trunk wall 
(1.9°C) and back (1.8°C). The most stable and earliest 

Tab. 3. Behavioural parameters and sensor technologies used in BRD diagnosis
Parameter Description Monitoring technology Source

Frequency of feed intake Number of interactions with the feed delivery system per 
unit of time

RFID-enabled automatic feeding stations with integrated 
sensors

(9)

Chewing time Total duration of chewing activity, recorded as chewing 
cycles per day

In-ear accelerometers (e.g., ACL/Smartbow system) (41)

Physical activity Comprehensive assessment of movement patterns, 
including step count and changes in body position

Inertial Measurement Units (IMUs) with linear and 
angular acceleration analysis

(11)

Resting time Total daily duration spent lying down or motionless Inertial position sensors incorporating gyroscopes and 
magnetometers (e.g. CowManager SensOor)

(28)

Respiratory rate Number of respiratory cycles per minute under resting 
conditions

Nasal sensors with differential pressure detection (e.g. 
Gouna RR Sensor) or pneumotachographs

(53)

C.W.C Measurement of core body temperature (c.w.c) as an 
indicator of inflammatory response

Temperature loggers (e.g., iButton DS1922L) or infrared 
thermography (IRT)

(43)
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thermal changes were observed in the orbital region, 
with an average increase of 2.6°C. Significant devia-
tions from baseline values were detected as early as 
the first day post-infection (P < 0.05). Notably, the 
maximum orbital temperature reached 37.2°C in the 
infected group, while it did not exceed 34.8°C in the 
control group (42). Importantly, the increase in or-
bital temperature preceded both the rise in core body 
temperature, the onset of clinical symptoms and the 
elevation of acute-phase proteins. This suggests its 
potential as a predictive marker of pneumonia during 
the subclinical phase (42). This study was followed 
by an experiment conducted by the same research 
team under field conditions, involving 133 calves, 
in which the effectiveness of infrared thermography 
in detecting the bovine respiratory disease complex 
was evaluated (43). IRT demonstrated a sensitivity of 
80%, a specificity of 65% and an overall diagnostic 
accuracy of 71%, compared to 70%, 45% and 55%, 
respectively, for traditional clinical assessment based 
on visual observation and scoring scales. Moreover, 
thermography showed greater stability and consistency 
particularly in orbital region temperature measure-
ments, which had the lowest coefficient of variation 
among the anatomical sites assessed. The statistically 
significant superiority of IRT over conventional clinical 
evaluation in identifying preclinical BRDC cases was 
confirmed by Fisher’s exact test (P < 0.01), indicating 
its higher diagnostic value during the asymptomatic 
phase (43). This finding is of particular importance, 
as the success of BRDC treatment is closely linked 
to diagnosis and timely therapeutic intervention (12). 
In a separate study on the use of experimental nitric 
oxide (NO) therapy in calves with BRDC, thermog-
raphy proved capable of earlier identification of ani-
mals eligible for treatment, even before the onset of 
full clinical signs. Treatment initiated on the basis of 
increased orbital temperature resulted in significantly 
lower maximum thermal values (36.2 ± 0.2°C) and 
lower corrected clinical scores (2.7 ± 0.4), compared 
to the group in which treatment was initiated only 
after the development of clinical signs (37.0 ± 0.2°C; 
clinical score: 3.9 ± 0.4) (44). An important aspect of 
thermography in the diagnosis of respiratory diseases is 
the assessment of animal welfare. Traditional methods 

of evaluating adaptive stress responses, such as blood 
sampling for cortisol measurement as an endocrine 
marker, may themselves induce stress and potentially 
affect the accuracy of results (48). Studies have shown 
that IRT can provide valuable insights into both short-
term sympathetic nervous system activation and the 
hypothalamic-pituitary-adrenal (HPA) axis response, 
making it a useful, non-invasive tool for monitoring 
health and welfare in production environments (48). 
Consequently, thermography holds promise as a pre-
cise, reproducible and rapid diagnostic modality for 
the early detection of respiratory disease, evaluation of 
treatment efficacy and monitoring of animal welfare. 
Its integration into routine veterinary diagnostics could 
significantly enhance the standard of care for calves 
on commercial farms.

Reverse transcription recombinase-aided 
amplification (RT-RAA) in molecular diagnostics
The reverse transcription reaction combined with 

polymerase chain reaction (RT-PCR) is currently one 
of the most important molecular diagnostic tools for 
detecting viral infections in cattle. Due to its high sen-
sitivity and specificity, this technique can be used for 
rapid and accurate identification of the genetic mate-
rial of pathogens, such as bovine coronavirus (BcoV) 
and bovine respiratory syncytial virus (BRSV) (1, 20).

The mechanism of RT-PCR is based on the conver-
sion of viral RNA into complementary cDNA (cDNA) 
by reverse transcriptase, followed by the amplification 
of specific fragments of this material using appropri-
ately designed primers. This makes it possible to detect 
even very small amounts of viral genetic material, 
which is particularly important for the early diagnosis 
of infections and for limiting their further spread within 
the herd (2, 8). Selective and highly accurate detection 
of pathogens is achieved by the use of primers target-
ing highly conserved genomic regions. Optimisation 
of these primer sequences has been shown to increase 
the diagnostic sensitivity of RT-PCR assays, even in 
cases of low virus titres (1, 3). Furthermore, it is also 
possible to distinguish BRSV from other aetiological 
agents of BRDC through targeted selection of specific 
sequences, reducing the risk of false-negative results. 
In addition to conventional RT-PCR, it is possible to 

Tab. 4. Comparison of diagnostic parameters in RT-PCR and RT-RAA
Diagnostic Parameter RT-PCR Method RT-RAA Method Source

Response time 90-120 min 15-20 min (3, 22)

Reaction temperature Variable (thermal cycling: 94°C-60°C) Constant (39°C) (3, 22)

Detection limit 5 × 104 RNA copies 5 × 10² RNA copies (1, 22)

Diagnostic specificity High potential cross-reactivity with suboptimal primers Very high (no cross-reactions with IBRV, BPIV3, BVDV, BCoV) (1, 3, 22)

Diagnostic sensitivity Reference (baseline sensitivity) Up to 100 times as high as RT-PCR (20, 22)

Hardware requirements Requires a thermal cycler Only an isothermal incubator or thermostat needed (1, 22)

Suitability for field use Limited laboratory-dependent Suitable for field conditions (1, 22)
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develop isothermal amplification variants, such as 
RT-RAA (reverse transcription recombinase-aided 
amplification), which produce faster diagnostic results 
without the need for complex laboratory equipment. 
This is achieved through the use of a  recombinase 
enzyme, single-stranded DNA-binding proteins and 
a  polymerase which together facilitate nucleic acid 
amplification at a  constant temperature, so that the 
reaction can be performed in a simple thermostat or 
incubator. While the sensitivity of RT-RAA in the 
detection of BRSV is comparable to that of RT-PCR, 
it has significantly shorter reaction times, making it 
particularly useful in clinical and field settings (22). An 
additional advantage of this method is its applicability 
in population-level and epidemiological studies. It is 
suitable for rapid analysis of samples from different 
geographic locations, which facilitates the monitoring 
of infection dynamics across herds and regions. This is 
essential for timely responses to outbreaks and helps 
in the evaluation of preventive programmes and (20, 
22). Consequently, both RT-PCR and RT-RAA not only 
increase the precision of clinical diagnostics in veteri-
nary medicine, but also constitute key components of 
modern epizootic surveillance and herd health man-
agement. A comparison of the diagnostic effectiveness 
of RT-PCR and RT-RAA methods in detecting viral 
respiratory pathogens in cattle is presented in Table 4.

IoT technology
Modern diagnostic systems based on Internet of 

Things (IoT) technology, combined with artificial 
intelligence, represent a  significant advancement in 
livestock health monitoring, particularly for respiratory 
diseases. These systems can be used for the continuous, 
real-time recording of physiological and environmental 
parameters via sensors placed on the animal’s body or 
within its environment. For instance, sensors that moni-
tor c.w.c., heart rate, respiratory rate and physical ac-
tivity have been successfully implemented in systems 
such as LiveCare, which integrates the collected data 
into a web-based platform. These data are subsequently 
analysed using (Fully Connected Neural Networks – 
FCNNs) to classify animal health status (10). These 
systems typically employ a layered architecture, where 
data from peripheral sensors are transmitted to central 
processing platforms and analysed using machine 
learning algorithms, such as Support Vector Machines 
(SVM) (53). This integrated approach not only facili-
tates the early detection of subclinical disease states, 
but also makes it possible to accurately classify and 
predict health-related events (46).

Diagnostic systems designed for field use, such as 
smart bands and ear tags for monitoring physiologi-
cal parameters, are currently under development. One 
model employs Bluetooth and Wi-Fi technologies 
for real-time data transmission, thereby supporting 
therapeutic decisions (4). In addition, an integrated 

diagnostic and monitoring platform has been developed 
that automatically generates alerts when deviations 
from physiological norms are detected in livestock 
(13). This system utilises both environmental sensors 
and physiological sensors to monitor parameters, such 
as c.w.c., heart rate, respiratory rate and locomotor 
activity. These readings are continuously compared 
with established reference values, and anomalies trig-
ger automated notifications delivered to a dedicated 
mobile application. A similar system uses environ-
mental and physiological sensors in conjunction with 
fog computing (FC) architecture, where data analysis 
occurs decentrally, closer to the point of data collection 
(17). This structure reduces latency, which accelerates 
the identification of health anomalies. Notably, the 
system emphasises the importance of multimodal data 
integration, which increases the reliability of health 
assessments, particularly in environments with limited 
network infrastructure (36). The use of edge comput-
ing units and asynchronous data transmission makes it 
possible to temporarily cache data and transmit them 
once the network connection has been re-established. 
Consequently, the integration of IoT technologies with 
artificial intelligence algorithms not only facilitates 
early detection of health issues, but also supports au-
tomated implementation of preventive measures, thus 
increasing the efficiency of herd health management.

Spirometry
Spirometry is a modern tool for the quantitative as-

sessment of respiratory function in cattle. This method 
makes it possible to measure key parameters, such as 
respiratory rate (RR), tidal volume (Vt) and minute 
volume (Vmin). Due to its non-invasive nature, mini-
mal requirement for animal immobilisation and high 
accuracy, spirometry is gaining increasing application 
in veterinary medicine – particularly in the diagnosis 
of BRDC. One of the more recent advancements in 
this field is pulse oscillometry (forced gas delivery 
– FGD), which measures airflow, Vt and RR using 
a pneumotachograph integrated with a high-precision 
pressure transducer (14). Although accurate, this 
method requires the use of a tight-fitting mask, which 
limits its applicability to controlled laboratory or clini-
cal settings and makes it unsuitable for freely moving 
animals. To address these limitations, an innovative RR 
respiratory sensor has been developed by the Leibniz 
Institute for Agricultural Engineering and Bioeconomy. 
This device measures RR based on the pressure dif-
ferential between inhalation and exhalation through 
a  single nostril (49). The compact sensor, weighing 
less than 50 grams, can be mounted using a nose ring 
to reliably monitor RR in calves without the need for 
physical restraint.

The accuracy of the innovative nasal sensor in mea-
suring RR and Vt was evaluated by comparison with 
the reference method of pulse oscillometry (14). The 
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mean RR recorded by the sensor was 36.2 ± 4.1 breaths 
per minute, which showed no statistically significant 
difference from the value obtained by the FGD method 
(35.8 ± 3.9 breaths/min). A high Spearman correlation 
coefficient (r = 0.95) confirmed strong agreement be-
tween the two methods of RR measurement. For Vt, 
the correlation was also high (r = 0.91), but values were 
expressed in relative (dimensionless) units because of 
the sensor’s mode of signal capture. After exercise, the 
mean RR increased to 48.5 ± 5.2 breaths/min, again 
showing close agreement with FGD measurements 
(48.1 ± 4.8 breaths/min), which further demonstrates 
the high precision and diagnostic potential of this non-
invasive technology. Moreover, the nasal sensor has 
been validated for use under field conditions, signifi-
cantly reducing stress-related influence on calves and 
minimizing the need for handling by personnel. The 
device ensures accurate monitoring, enabling veterinar-
ians to intervene promptly – potentially even before 
the onset of clinical signs (14). The need for precise 
diagnosis of respiratory diseases in cattle underscores 
the importance of adopting advanced measurement 
techniques (51). The findings suggest that measuring 
RR and Vt with a nasal sensor is a promising alterna-
tive to classical spirometric methods, particularly in 
group-level assessments of calves under production 
conditions (14).

Summary
Advancements in technology, such as artificial intel-

ligence, molecular diagnostics and precision monitor-
ing systems, are opening new horizons in veterinary 
medicine, increasing the efficiency of disease detection 
and improving animal welfare. The application of these 
methods holds significant potential to revolutionize 
veterinary diagnostics and thus increase the productiv-
ity and profitability of livestock farming. Despite these 
important advantages, however, modern diagnostic 
technologies also present considerable challenges. The 
high cost of implementation, maintenance and required 
infrastructure – especially in the case of AI-based sys-
tems – may pose a significant barrier for farms with 
limited financial resources and for a large proportion 
of veterinary practices. Moreover, the effectiveness of 
such technologies depends heavily on the availability 
of high-quality input data, which is often difficult to 
obtain under field conditions. Inaccuracies in data 
acquisition or interpretation can lead to incorrect di-
agnoses, undermining clinical outcomes. Additionally, 
the integration of these tools requires trained personnel 
capable of operating and interpreting outputs from ad-
vanced diagnostic platforms. The need for additional 
training and adaptation periods may delay the wide-
spread adoption of these methods and introduce further 
economic and logistical constraints. From a practical 
standpoint, we believe that while these technologies of-
fer significant added value – particularly in large-scale 

or specialized operations – their implementation must 
be tailored to the economic and organizational capaci-
ties of individual farms. Importantly, such diagnostic 
models should be viewed as complementary tools 
that support, but do not replace, the legally defined 
responsibilities of veterinarians and farmers. Effective 
herd health management still fundamentally depends 
on professional clinical assessment, decision-making 
and ongoing human supervision.
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