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Summary

Technological advancements are significantly transforming the diagnosis of respiratory diseases in cattle.
Traditional, subjective clinical methods are gradually being replaced by advanced solutions incorporating
artificial intelligence, sensor technologies and multidimensional biological data analysis. Modern tools are
suitable for continuous, non-invasive health monitoring under real-world production conditions. Integrated
systems that combine acoustic, behavioural, imaging and molecular data, supported by predictive algorithms
and advanced computational frameworks are becoming increasingly important. Diagnosis is shifting towards
a proactive model, focusing on the early detection of deviations from physiological norms, rather than solely
responding to clinical signs. This development results in reduced antibiotic use, improved animal welfare and
greater economic efficiency. The diagnostic model presented in this study reflects a systemic reorientation of
contemporary veterinary medicine towards precise, automated solutions powered by machine learning.
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The detection and management of respiratory dis-
eases in cattle remain a significant challenge in vet-
erinary medicine, primarily due to their complex and
multifactorial nature, encompassing both infectious
and non-infectious etiologies. Bovine Respiratory
Disease Complex (BRDC) is a condition involving
multiple viral and bacterial pathogens compounded by
environmental factors, such as nutritional and housing
deficiencies. These interactions complicate both the
diagnostic process and the effectiveness of treatment
strategies (34). Traditional diagnostic methods for
BRDC — largely reliant on the clinical assessment of
individual animals — suffer from notable limitations
in terms of objectivity and sensitivity. This has driven
the search for approaches incorporating artificial intel-
ligence (Al) and ‘deep learning’ (a subset of machine
learning), which align with modern technological ad-
vancements. The application of these tools in cattle has
already made it possible to identify cases of respiratory
disease faster and more accurately through clinical and
imaging data analysis (30). The integrations of such

advanced diagnostic methods is essential for mitigating
economic losses in livestock production while simul-
taneously enhancing animal health and welfare (39).
Technologies such as Precision Livestock Farming
(PLF), which utilise real-time monitoring systems, are
gaining increasing importance in modern herd manage-
ment. These innovative solutions accurately track the
physiological and behavioural parameters of individual
animals, facilitating the early detection of respiratory
diseases and the implementation of more targeted
interventions (38). Advanced monitoring technolo-
gies are capable of continuous health surveillance of
individual animals, making it possible to improve their
productive performance by timely interventions while
eliminating subjective errors, common in the diagnosis
of cattle diseases (21). Notably, the early and accurate
diagnosis of pneumonia in calves makes it possible to
immediately implement appropriate therapies, which
can significantly reduce morbidity and mortality rates
and, consequently, improve economic outcomes in
cattle production systems (52). The integration of
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artificial intelligence techniques with traditional diag-
nostic methods (e.g., clinical examination) is helpful
in identifying disease risk factors. Automation of the
diagnostic process not only reduces human error, but
also significantly shortens the time required to obtain
results (2). An integrated diagnostic approach ensures
amore comprehensive and precise ongoing assessment
of calf health, thereby increasing the effectiveness of
early diagnosis, disease surveillance and prognosis.
Furthermore, the application of advanced monitoring
technologies supports timely therapeutic decision-
making and helps eliminate the overuse of antibiotics
in veterinary practice, an especially critical issue given
the rising antibiotic resistance (40).

Basic diagnostic methods

Modern diagnostic techniques for respiratory dis-
eases in calves are derived from classical methods,
which continue to serve as the foundation for the early
detection of respiratory disorders and the evaluation of
their clinical course. Auscultation of the thorax with
a stethoscope in six anatomically defined auscultatory
fields — three on each side — is one of the essential
components of the comprehensive clinical examination
performed by a licensed veterinarian. It can identify
abnormal respiratory sounds, such as fine and coarse
rales, wheezes or crackles, which may indicate inflam-
mation, airway obstruction or accumulation of exudate
(6). However, auscultation should always be preceded
and supported by a full clinical assessment, including
anamnesis, evaluation of environmental conditions,
general physical examination, measurement of vital
signs and, if necessary, further laboratory or imaging
diagnostics. In addition, the respiratory rate (RR) is
commonly assessed, as a non-invasive measure of
respiratory function in calves. Deviations from the
normal number of breaths per minute under resting
conditions may provide an early identification of, the
onset of an inflammatory process (37). To standard-
ize clinical evaluations, the Calf Respiratory Score

Tab. 1. Basic diagnostic methods for BRD detection
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(CRS) system is employed. This tool assesses five
parameters: core body temperature (c.w.c), nasal and
ocular discharge, coughing and ear position. Each
parameter is scored on a scale from 0 to 3, providing
an objective method for evaluating the severity of
respiratory symptoms in individual animals (33). The
CRS is particularly valuable for initial screening and
for monitoring the respiratory health of calves within
the herd. For a more precise structural assessment of
the respiratory system, lung ultrasound (USG) is in-
creasingly employed as a first-line imaging modality
in calf diagnostics (5). This technique offers a high-
resolution visualisation of the superficial layers of the
pulmonary parenchyma, facilitating the identification
of characteristic pathological changes, such as consoli-
dations or the presence of exudate (24). The lesions are
typically graded on a scale from 0 to 5, providing an
objective classification of the severity of the disease
process. Necropsy, including a comprehensive patho-
morphological evaluation of the lungs, serves as the
definitive reference stage in the diagnostic process.
During necropsy, key pathological features are as-
sessed, including the presence of exudate, the degree
of consolidation, necrotic foci and their topographical
distribution within the lung parenchyma (15). The find-
ings obtained from necropsy serve as a benchmark for
validating diagnostic techniques used in vivo and are
essential for the retrospective evaluation of the effec-
tiveness of therapeutic and prophylactic interventions.
A summary of the clinical characteristics of principal
methods used to detect respiratory diseases in calves
is presented in Table 1.

Despite their widespread use, classical diagnostic
methods are imprecise, and their effectiveness largely
depends on the examiner’s experience and prevailing
environmental conditions (35). Techniques such as
auscultation, ultrasonography, or clinical evaluation
using the CRS rely on subjective interpretation of clini-
cal signs, which increases the risk of false-positive or
false-negative results, particularly during the subclini-

Method Description Advantages Restrictions Source
Clinical evaluation (CRS - Calf Assessment of clinical signs (core | Safe, quick, and easy to perform Subjective assessment, low (33)
Respiratory Scoring System) body temperature, cough, nasal/ under field conditions reproducibility, limited correlation
ocular discharge, ear and eye with actual lung pathology
position) scored on a 0-3 scale
Chest auscultation Stethoscopic examination of six Non-invasive, cost-effective, and Low sensitivity to small or deep (6)
thoracic auscultation fields provides immediate evaluation of- | pulmonary lesions; susceptible to
respiratory function environmental noise
Respiratory rate (RR) Counting breaths per minute under | Capable of early detection of Highly variable due to stress and (37)
measurement resting conditions respiratory abnormalities; no environmental factors
specialised equipment required
Lung ultrasonography (LUS) Imaging of the lungs; High sensitivity for early detection | Requires specialized equipment (24)
classification of lesions on a scale | of pulmonary lesions and training, limited in
from0to5 determining etiological factors
Post-mortem examination Morphological assessment of Provides precise and definitive Cannot be used for in vivo (15)
(Necropsy) lungs after death classification of lesions diagnosis
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cal stages of disease. That is why modern diagnostic
approaches based on artificial intelligence, machine
learning and digital analysis of imaging, acoustic
and genetic data are gaining increasing prominence.
These technologies not only reduce the likelihood of
diagnostic error, but also automate diagnostic pro-
cesses, thereby enhancing sensitivity, objectivity and
reproducibility (47). Al-based systems are capable
of detecting diagnostic patterns that may be imper-
ceptible with traditional methods, while real-time
monitoring solutions can be used to identify disease
at both individual and herd levels (23). With the rapid
advancement of digital and bioinformatics tools, it is
anticipated that traditional methods will gradually be
supplanted by integrated diagnostic systems driven by
data and algorithm-based decision-making (18). This
transition from subjective clinical evaluation to precise,
automated diagnostics represents not only progress, but
also an evolution in response to the raising of standards
for animal health and welfare (50).

Analysis of respiratory sounds

One of the most recent advancements in non-
invasive diagnostic methods in veterinary medicine
is the acoustic signal analysis supported by artificial
intelligence (AI). The initial stage of this technol-
ogy involves the recording and digital processing of
acoustic data, such as coughing, respiratory murmurs
or breathing rhythms. Al algorithms, particularly those
based on machine learning, analyse the frequency, in-
tensity, amplitude and duration of sounds to assess the
physiological condition of the animal (16). Research
has shown that specific acoustic features, such as an
increased number of coughs, an altered tonal quality
of respiratory sounds or a higher frequency of high-
pitched components, are significant indicators of
respiratory pathologies (7). The diagnostic value of
this method is increased by the training of Al models
on large, diverse datasets containing recordings from
both healthy and diseased animals at various stages of
illness (29). This approach makes it possible to detect
subtle acoustic anomalies that may remain inaudible
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even to experienced veterinarians during conventional
auscultation with a stethoscope.

The automation of sound signal processing and
interpretation significantly enhances diagnostic effi-
ciency. It also facilitates the timely implementation of
therapeutic interventions, which is particularly critical
in the case of rapidly progressing diseases, such as
pneumonia in calves (31). A practical example of this
approach is the development of herd health monitoring
systems equipped with acoustic sensors integrated with
Al-based algorithms (29). These systems continuously
analyse respiratory sounds, identify anomalies and
generate alerts when abnormal patterns are detected.
Moreover, such technologies can be integrated into
farm management platforms, providing real-time
updates on the health status of individual animals and
supporting data-driven decision-making (25). The
use of Al-driven acoustic analysis also extends to the
assessment of animal welfare, as variations in sound
patterns may indicate not only pathological conditions,
but also environmental stressors, such as heat stress.
Studies have shown that elevated ambient temperatures
cause an increased respiratory rate (tachypnoea) and
changes in the intensity and tonal quality of respiratory
sounds in cattle (32, 45). Therefore, the integration of
acoustic data with other physiological and environ-
mental parameters, such as body temperature, physical
activity or humidity, may offer a comprehensive and
proactive approach to herd health monitoring. This
integrated method enhances the precision of early
diagnosis and improves the effectiveness of both pre-
ventive and therapeutic interventions. The key acoustic
parameters of respiratory signals in calves, as analysed
by artificial intelligence, are summarised in Table 2.

Behavioural, physiological and genomic analysis

The detection of respiratory diseases in cattle
through behavioural data analysis combined with
machine learning algorithms operates in an integrated
and precise manner. This system is based on the con-
tinuous monitoring of parameters such as individual
feeding behaviour and physical activity (8). Sensors

Tab. 2. Acoustic parameters of respiratory signals in calves analysed using artificial intelligence

Acoustic parameter Signal characteristics Diagnostic significance Source

Frequency (F,) Fundamental frequency of acoustic vibrations, Variability may indicate stress or increased (19)
expressed in Hz muscular tension

Spectral slope Decline in signal energy with increasing frequency; | A steeper slope is associated with mucus (16)
balance of low vs. high frequencies accumulation and obstructive lesions

Decay time Time taken for the cough signal to return to baseline | Prolongation suggests decreased lung elasticity (7)

Amplitude Modulation Index (AM rate) | Frequency of amplitude variation in the respiratory | Abnormal modulation may reflect irregular (25)
signal (Hz) ventilation patterns

Duration of the expiratory cough Length of the exhalation phase in a single cough Extended duration is often observed in conditions (31)

component cycle (ms) such as pneumonia or bronchitis

Cepstral Coefficients (MFCC) Parameters representing the spectral shape of the Variations in MFCC patterns correlate with disease (7)
signal type and progression stage
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Tab. 3. Behavioural parameters and sensor technologies used in BRD diagnosis
Parameter Description Monitoring technology Source

Frequency of feed intake | Number of interactions with the feed delivery system per | RFID-enabled automatic feeding stations with integrated (9)
unit of time sensors

Chewing time Total duration of chewing activity, recorded as chewing In-ear accelerometers (e.g., ACL/Smarthow system) (41)
cycles per day

Physical activity Comprehensive assessment of movement patterns, Inertial Measurement Units (IMUs) with linear and (11)
including step count and changes in body position angular acceleration analysis

Resting time Total daily duration spent lying down or motionless Inertial position sensors incorporating gyroscopes and (28)

magnetometers (e.g. CowManager Sens0Oor)

Respiratory rate Number of respiratory cycles per minute under resting Nasal sensors with differential pressure detection (e.g. (53)
conditions Gouna RR Sensor) or pneumotachographs

C.w.c Measurement of core body temperature (c.w.c) as an Temperature loggers (e.g., iButton DS1922L) or infrared (43)
indicator of inflammatory response thermography (IRT)

and specialised recording devices based on advanced
technologies can be used for ongoing surveillance of
behavioural metrics, including feed intake frequency,
physical activity levels and resting duration. Collected
by MEMS (Micro-Electro-Mechanical Systems)
accelerometers, automatic feeding stations with
RFID (Radio Frequency Identification) technology
and respiratory sensors, these data are subsequently
processed and analysed using artificial intelligence
algorithms, such as SVM (Support Vector Machine)
and Random Forest (4). The key component of this
system is the identification of behavioural patterns that
deviate from established norms. AI models compare
real-time behavioural data with reference profiles of
healthy animals to detect anomalies indicative of early
respiratory disease (26). For example, a combination
of reduced physical activity, decreased rumination
frequency and shortened feed intake time may suggest
impaired respiratory function or the onset of inflam-
mation. When such deviations are detected, the system
issues an alert, facilitating timely diagnostic and thera-
peutic interventions. The use of K-nearest neighbours
(KNN) models has demonstrated success in predicting
cases of BRDC up to six days before the appearance
of clinical signs, with reported accuracies exceeding
90% (9). Positive, correlations have also been observed
in studies employing integrated monitoring systems
that collect behavioural and physiological data using
ear-mounted accelerometers to continuously record
activity and chewing time (41). Table 3 summarises the
key behavioural and physiological parameters, along
with the associated monitoring technologies employed
in the early detection of respiratory diseases in calves.

Another modern approach to the diagnosis of BRDC
involves the analysis of genomic sequences of asso-
ciated pathogens using graph-based representations
and deep neural networks. These advanced methods
make it possible to identify specific pathogens on the
basis of their unique DNA or RNA sequences, which
is particularly valuable in cases of co-infection, where
traditional diagnostic techniques may suffer from
limited sensitivity and specificity. The application

of k-mers and network embedding techniques has
facilitated the effective identification of characteristic
pathogen signatures (34). K-mers — short, overlap-
ping nucleotide fragments — serve as units of genomic
analysis that capture unique features of the pathogen’s
genetic material. The implementation of deep learning
algorithms to process these fragments has significantly
enhanced classification accuracy, achieving rates as
high as 89.7% in the identification of BRDC-associated
pathogens. Consequently, the integration of Al-based
genomic analysis not only improves diagnostic ef-
ficiency, but also makes it possible to use predictive
and personalised strategies in herd health management.
Early identification of infected individuals, automation
of population-level surveillance and seamless integra-
tion with farm management platforms, improve the
quality of veterinary care. Furthermore, this approach
promotes a more sustainable livestock management
by reducing economic losses and the overuse of anti-
biotics (4).

Thermography

Infrared thermography (IRT) is a non-invasive and
fully non-contact imaging technique capable of precise
measurement of body surface temperature distribution
by detecting thermal radiation emitted by the body
(42). The application of this method in veterinary di-
agnostics, particularly in bovine respiratory diseases,
has significant potential for the early detection of in-
flammatory responses (43). This is especially relevant
in intensive production systems, where it is difficult
to reduce antibiotic use while maintaining both ani-
mal welfare and herd health (27). The effectiveness
of thermography for the early detection of infectious
diseases in cattle was confirmed in a study involving
an experimental calf infection model with bovine viral
diarrhoea virus type 2 (BVDV-2) (42). Thermographic
analysis revealed a statistically significant increase in
surface temperature at various anatomical locations
in infected animals, including the nostrils (mean in-
crease of 3.5°C), auricles (3.9°C), lateral trunk wall
(1.9°C) and back (1.8°C). The most stable and earliest
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thermal changes were observed in the orbital region,
with an average increase of 2.6°C. Significant devia-
tions from baseline values were detected as early as
the first day post-infection (P < 0.05). Notably, the
maximum orbital temperature reached 37.2°C in the
infected group, while it did not exceed 34.8°C in the
control group (42). Importantly, the increase in or-
bital temperature preceded both the rise in core body
temperature, the onset of clinical symptoms and the
elevation of acute-phase proteins. This suggests its
potential as a predictive marker of pneumonia during
the subclinical phase (42). This study was followed
by an experiment conducted by the same research
team under field conditions, involving 133 calves,
in which the effectiveness of infrared thermography
in detecting the bovine respiratory disease complex
was evaluated (43). IRT demonstrated a sensitivity of
80%, a specificity of 65% and an overall diagnostic
accuracy of 71%, compared to 70%, 45% and 55%,
respectively, for traditional clinical assessment based
on visual observation and scoring scales. Moreover,
thermography showed greater stability and consistency
particularly in orbital region temperature measure-
ments, which had the lowest coefficient of variation
among the anatomical sites assessed. The statistically
significant superiority of IRT over conventional clinical
evaluation in identifying preclinical BRDC cases was
confirmed by Fisher’s exact test (P < 0.01), indicating
its higher diagnostic value during the asymptomatic
phase (43). This finding is of particular importance,
as the success of BRDC treatment is closely linked
to diagnosis and timely therapeutic intervention (12).
In a separate study on the use of experimental nitric
oxide (NO) therapy in calves with BRDC, thermog-
raphy proved capable of earlier identification of ani-
mals eligible for treatment, even before the onset of
full clinical signs. Treatment initiated on the basis of
increased orbital temperature resulted in significantly
lower maximum thermal values (36.2 £ 0.2°C) and
lower corrected clinical scores (2.7 + 0.4), compared
to the group in which treatment was initiated only
after the development of clinical signs (37.0 = 0.2°C;
clinical score: 3.9 + 0.4) (44). An important aspect of
thermography in the diagnosis of respiratory diseases is
the assessment of animal welfare. Traditional methods
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of evaluating adaptive stress responses, such as blood
sampling for cortisol measurement as an endocrine
marker, may themselves induce stress and potentially
affect the accuracy of results (48). Studies have shown
that IRT can provide valuable insights into both short-
term sympathetic nervous system activation and the
hypothalamic-pituitary-adrenal (HPA) axis response,
making it a useful, non-invasive tool for monitoring
health and welfare in production environments (48).
Consequently, thermography holds promise as a pre-
cise, reproducible and rapid diagnostic modality for
the early detection of respiratory disease, evaluation of
treatment efficacy and monitoring of animal welfare.
Its integration into routine veterinary diagnostics could
significantly enhance the standard of care for calves
on commercial farms.

Reverse transcription recombinase-aided
amplification (RT-RAA) in molecular diagnostics

The reverse transcription reaction combined with
polymerase chain reaction (RT-PCR) is currently one
of the most important molecular diagnostic tools for
detecting viral infections in cattle. Due to its high sen-
sitivity and specificity, this technique can be used for
rapid and accurate identification of the genetic mate-
rial of pathogens, such as bovine coronavirus (BcoV)
and bovine respiratory syncytial virus (BRSV) (1, 20).

The mechanism of RT-PCR is based on the conver-
sion of viral RNA into complementary eDNA (cDNA)
by reverse transcriptase, followed by the amplification
of specific fragments of this material using appropri-
ately designed primers. This makes it possible to detect
even very small amounts of viral genetic material,
which is particularly important for the early diagnosis
of infections and for limiting their further spread within
the herd (2, 8). Selective and highly accurate detection
of pathogens is achieved by the use of primers target-
ing highly conserved genomic regions. Optimisation
of these primer sequences has been shown to increase
the diagnostic sensitivity of RT-PCR assays, even in
cases of low virus titres (1, 3). Furthermore, it is also
possible to distinguish BRSV from other aetiological
agents of BRDC through targeted selection of specific
sequences, reducing the risk of false-negative results.
In addition to conventional RT-PCR, it is possible to

Tab. 4. Comparison of diagnostic parameters in RT-PCR and RT-RAA

Diagnostic Parameter RT-PCR Method RT-RAA Method Source
Response time 90-120 min 15-20 min (3, 22)
Reaction temperature Variable (thermal cycling: 94°C-60°C) Constant (39°C) (3, 22)
Detection limit 5 x 10* RNA copies 5 x 102 RNA copies (1, 22)
Diagnostic specificity High potential cross-reactivity with suboptimal primers | Very high (no cross-reactions with IBRV, BPIV3, BVDV, BCoV) | (1, 3, 22)
Diagnostic sensitivity Reference (baseline sensitivity) Up to 100 times as high as RT-PCR (20, 22)
Hardware-requirements | Requires a thermal cycler Only an isothermal incubator or thermostat needed (1, 22)
Suitability for field use | Limited laboratory-dependent Suitable for field conditions (1, 22)
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develop isothermal amplification variants, such as
RT-RAA (reverse transcription recombinase-aided
amplification), which produce faster diagnostic results
without the need for complex laboratory equipment.
This is achieved through the use of a recombinase
enzyme, single-stranded DNA-binding proteins and
a polymerase which together facilitate nucleic acid
amplification at a constant temperature, so that the
reaction can be performed in a simple thermostat or
incubator. While the sensitivity of RT-RAA in the
detection of BRSV is comparable to that of RT-PCR,
it has significantly shorter reaction times, making it
particularly useful in clinical and field settings (22). An
additional advantage of this method is its applicability
in population-level and epidemiological studies. It is
suitable for rapid analysis of samples from different
geographic locations, which facilitates the monitoring
of infection dynamics across herds and regions. This is
essential for timely responses to outbreaks and helps
in the evaluation of preventive programmes and (20,
22). Consequently, both RT-PCR and RT-RA A not only
increase the precision of clinical diagnostics in veteri-
nary medicine, but also constitute key components of
modern epizootic surveillance and herd health man-
agement. A comparison of the diagnostic effectiveness
of RT-PCR and RT-RAA methods in detecting viral
respiratory pathogens in cattle is presented in Table 4.

loT technology

Modern diagnostic systems based on Internet of
Things (IoT) technology, combined with artificial
intelligence, represent a significant advancement in
livestock health monitoring, particularly for respiratory
diseases. These systems can be used for the continuous,
real-time recording of physiological and environmental
parameters via sensors placed on the animal’s body or
within its environment. For instance, sensors that moni-
tor c.w.c., heart rate, respiratory rate and physical ac-
tivity have been successfully implemented in systems
such as LiveCare, which integrates the collected data
into a web-based platform. These data are subsequently
analysed using (Fully Connected Neural Networks —
FCNNSs) to classify animal health status (10). These
systems typically employ a layered architecture, where
data from peripheral sensors are transmitted to central
processing platforms and analysed using machine
learning algorithms, such as Support Vector Machines
(SVM) (53). This integrated approach not only facili-
tates the early detection of subclinical disease states,
but also makes it possible to accurately classify and
predict health-related events (46).

Diagnostic systems designed for field use, such as
smart bands and ear tags for monitoring physiologi-
cal parameters, are currently under development. One
model employs Bluetooth and Wi-Fi technologies
for real-time data transmission, thereby supporting
therapeutic decisions (4). In addition, an integrated
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diagnostic and monitoring platform has been developed
that automatically generates alerts when deviations
from physiological norms are detected in livestock
(13). This system utilises both environmental sensors
and physiological sensors to monitor parameters, such
as c.w.c., heart rate, respiratory rate and locomotor
activity. These readings are continuously compared
with established reference values, and anomalies trig-
ger automated notifications delivered to a dedicated
mobile application. A similar system uses environ-
mental and physiological sensors in conjunction with
fog computing (FC) architecture, where data analysis
occurs decentrally, closer to the point of data collection
(17). This structure reduces latency, which accelerates
the identification of health anomalies. Notably, the
system emphasises the importance of multimodal data
integration, which increases the reliability of health
assessments, particularly in environments with limited
network infrastructure (36). The use of edge comput-
ing units and asynchronous data transmission makes it
possible to temporarily cache data and transmit them
once the network connection has been re-established.
Consequently, the integration of IoT technologies with
artificial intelligence algorithms not only facilitates
early detection of health issues, but also supports au-
tomated implementation of preventive measures, thus
increasing the efficiency of herd health management.

Spirometry

Spirometry is a modern tool for the quantitative as-
sessment of respiratory function in cattle. This method
makes it possible to measure key parameters, such as
respiratory rate (RR), tidal volume (Vt) and minute
volume (Vmin). Due to its non-invasive nature, mini-
mal requirement for animal immobilisation and high
accuracy, spirometry is gaining increasing application
in veterinary medicine — particularly in the diagnosis
of BRDC. One of the more recent advancements in
this field is pulse oscillometry (forced gas delivery
— FGD), which measures airflow, Vt and RR using
a pneumotachograph integrated with a high-precision
pressure transducer (14). Although accurate, this
method requires the use of a tight-fitting mask, which
limits its applicability to controlled laboratory or clini-
cal settings and makes it unsuitable for freely moving
animals. To address these limitations, an innovative RR
respiratory sensor has been developed by the Leibniz
Institute for Agricultural Engineering and Bioeconomy.
This device measures RR based on the pressure dif-
ferential between inhalation and exhalation through
a single nostril (49). The compact sensor, weighing
less than 50 grams, can be mounted using a nose ring
to reliably monitor RR in calves without the need for
physical restraint.

The accuracy of the innovative nasal sensor in mea-
suring RR and Vt was evaluated by comparison with
the reference method of pulse oscillometry (14). The
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mean RR recorded by the sensor was 36.2 + 4.1 breaths
per minute, which showed no statistically significant
difference from the value obtained by the FGD method
(35.8 £ 3.9 breaths/min). A high Spearman correlation
coefficient (r = 0.95) confirmed strong agreement be-
tween the two methods of RR measurement. For Vt,
the correlation was also high (r=0.91), but values were
expressed in relative (dimensionless) units because of
the sensor’s mode of signal capture. After exercise, the
mean RR increased to 48.5 + 5.2 breaths/min, again
showing close agreement with FGD measurements
(48.1 + 4.8 breaths/min), which further demonstrates
the high precision and diagnostic potential of this non-
invasive technology. Moreover, the nasal sensor has
been validated for use under field conditions, signifi-
cantly reducing stress-related influence on calves and
minimizing the need for handling by personnel. The
device ensures accurate monitoring, enabling veterinar-
ians to intervene promptly — potentially even before
the onset of clinical signs (14). The need for precise
diagnosis of respiratory diseases in cattle underscores
the importance of adopting advanced measurement
techniques (51). The findings suggest that measuring
RR and Vt with a nasal sensor is a promising alterna-
tive to classical spirometric methods, particularly in
group-level assessments of calves under production
conditions (14).

Summary

Advancements in technology, such as artificial intel-
ligence, molecular diagnostics and precision monitor-
ing systems, are opening new horizons in veterinary
medicine, increasing the efficiency of disease detection
and improving animal welfare. The application of these
methods holds significant potential to revolutionize
veterinary diagnostics and thus increase the productiv-
ity and profitability of livestock farming. Despite these
important advantages, however, modern diagnostic
technologies also present considerable challenges. The
high cost of implementation, maintenance and required
infrastructure — especially in the case of Al-based sys-
tems — may pose a significant barrier for farms with
limited financial resources and for a large proportion
of veterinary practices. Moreover, the effectiveness of
such technologies depends heavily on the availability
of high-quality input data, which is often difficult to
obtain under field conditions. Inaccuracies in data
acquisition or interpretation can lead to incorrect di-
agnoses, undermining clinical outcomes. Additionally,
the integration of these tools requires trained personnel
capable of operating and interpreting outputs from ad-
vanced diagnostic platforms. The need for additional
training and adaptation periods may delay the wide-
spread adoption of these methods and introduce further
economic and logistical constraints. From a practical
standpoint, we believe that while these technologies of-
fer significant added value — particularly in large-scale
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or specialized operations — their implementation must
be tailored to the economic and organizational capaci-
ties of individual farms. Importantly, such diagnostic
models should be viewed as complementary tools
that support, but do not replace, the legally defined
responsibilities of veterinarians and farmers. Effective
herd health management still fundamentally depends
on professional clinical assessment, decision-making
and ongoing human supervision.
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